Electrostatic calculations for assignment of infrared difference bands to carboxyl groups getting protonated during protein reactions.

نویسنده

  • Karin Hauser
چکیده

Fourier transform infrared (FTIR) difference spectroscopy is predestined to monitor the protonation of carboxyl groups during protein reactions, making glutamic and aspartic amino acids unique to follow proton pathways. The absorption of the corresponding vibrations are clearly distinguishable from the absorption of other amino acids. However, the assignment to specific groups within the protein needs additional information, e.g., from induced spectral changes due to isotopic labeling or mutation. Here, the capability of electrostatic calculations to assign IR difference bands to specific carboxyl groups getting protonated is demonstrated by the ion pump mechanism of the sarcoplasmic reticulum Ca(2+)-ATPase. Active Ca(2+) transport is coupled to the hydrolysis of ATP. Two Ca(2+) ions are transported per ATP hydrolysed and two or three H(+) ions are countertransported. FTIR difference spectra show that during the Ca(2+) release step, carboxyl groups become protonated. Multiconformation continuum electrostatic calculations (MCCE) have been carried out to determine the equilibrium distribution of residue ionization and side chain conformation in dependence of pH. Available structural X-ray data from the calcium-bound and the calcium-free state allows us to simulate the transition between the two states monitored in the IR difference spectra. Exemplarily for Asp 800, ligand of both calcium ions, it is shown that MCCE calculations can identify this specific Asp to contribute to the IR bands and therefore to take part in the proton countertransport of the Ca(2+)-ATPase. In addition, an energy analysis can be performed to understand what interactions shift the pK(a).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluating glutamate and aspartate binding mechanisms to rutile (α-TiO2) via ATR-FTIR spectroscopy and quantum chemical calculations.

Attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy and quantum chemical calculations were used to elucidate the influence of solution chemistry (pH, amino acid concentration) on the binding mechanisms of glutamic and aspartic acid to rutile (α-TiO(2)). The amino acids, glutamate and aspartate, contain carboxyl and amine groups whose dissociation over a pH range re...

متن کامل

Protonation and Hydrogen Bonding of Ca Site Residues in the E2P Phosphoenzyme Intermediate of Sarcoplasmic Reticulum Ca-ATPase Studied by a Combination of Infrared Spectroscopy and Electrostatic Calculations

Protonation of the Ca ligands of the SR Ca-ATPase (SERCA1a) was studied by a combination of rapid scan FTIR spectroscopy and electrostatic calculations. With FTIR spectroscopy, we investigated the pH dependence of C1⁄4O bands of theCa-free phosphoenzyme (E2P) and obtained direct experimental evidence for the protonation of carboxyl groups uponCa release. At least three of the infrared signals f...

متن کامل

Deciphering the infrared spectrum of the protonated water pentamer and the hybrid Eigen-Zundel cation.

Traditionally, infrared band assignment for the protonated water clusters, such as H(+)(H2O)5, is based on their lowest energy isomer. Recent experiments extend the observation spectral window to lower frequencies, for which such assignment appears to be inadequate. Because this hydrogen-bonded system is highly anharmonic, harmonic spectral calculations are insufficient for reliable interpretat...

متن کامل

Infrared spectroscopy of phytochrome and model pigments.

Fourier-transform infrared difference spectra between the red-absorbing and far-red-absorbing forms of oat phytochrome have been measured in H2O and 2H2O. The difference spectra are compared with infrared spectra of model compounds, i.e. the (5Z,10Z,15Z)- and (5Z,10Z,15E)-isomers of 2,3,7,8,12,13,17,18-octaethyl-bilindion (Et8-bilindion), 2,3-dihydro-2,3,7,8,12,13,17,18-octaethyl-bilindion (H2E...

متن کامل

Effect of deprotonation on absorption and emission spectra of Ru(II)-bpy complexes functionalized with carboxyl groups.

Changes in the ground and excited state electronic structure of the [Ru(bpy)(3)](2+) (bpy = 2,2'-bipyridine) complex induced by functionalization of bpy ligands with carboxyl and methyl groups in their protonated and deprotonated forms are studied experimentally using absorption and emission spectroscopy and theoretically using density functional theory (DFT) and time dependent DFT (TDDFT). The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biopolymers

دوره 82 4  شماره 

صفحات  -

تاریخ انتشار 2006